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A SIMPLIFIED METHOD FOR THE DETERMINATION AND ANALYSIS OF
THE NEUTRAL-LATERAL-OSCILLATORY-STABILITY BOUNDARY

By Leonarp SterNFIELD and Oroway B. Garss, Jr.

SUMMARY

A necessary condition for neutral oscillatory stability is that
Routh’s discriminant R, formed from the coefficients of the
stability equation, is equal to zero. The expression for R is
D(BC—AD)—B*E where A, B, C, D, and E are the coefficients
of the lateral-stability equation. In a large number of the
cases considered in this study, it has been found that the term
B2E may be neglected. Routh’s discriminant is then factorable
wnto two simplified expressions, that is, BC— AD=R, and D;
and either Ri=0 or D=0, or both, may constitute a condition
of neutral stability. Test functions have been derived which, if
satisfied, indicate that the simplified expressions may be used to
approximate R=0. If Ri=0 and D=0 satisfy the necessary
and sufficient conditions for a neutral-oscillatory-stability
boundary, D=0 represents the boundary for the oscillation
which has a period comparatively longer than the period of
oscillation for which R1=0 is the boundary.

In general, the results of the computations obtained from
Ri=0 and D=0 show very good agreement with the results
calculated by the exact expression for R=0. The nature of the
modes of motion as a function of the directional-stability deriv-
ative and the effective-dihedral derivative 4s discussed in detail.

INTRODUCTION

The results of recent investigations (references 1 and 2
and unpublished results of lateral-stability analyses for
several experimental high-speed airplanes) have indicated
that small variations in some of the airplane mass and
aerodynamic parameters may cause a pronounced change in
the oscillatory stability of the airplane. It has been difficult
to explain the reasons for such pronounced changes because of
the complexity of the expression for neutral oscillatory stabil-
ity. This expression, based on the lateral-stability equations
with three degrees of freedom, involves a large number of
combinations of the mass and aerodynamic parameters. In
order to predict the stability of the lateral oscillation, there-
fore, it appears necessary to make a separate stability
analysis for each airplane.

The simplified expressions derived for the neutral-
oscillatory-stability boundary in the present theoretical inves-
tigation simplify the calculationsrequired to obtain the bound-
ary in the analysis essential for each airplane. Because of the
comparative simplicity of these expressions, an insight into

8(6769—50

the important combinations of mass and aerodynamic
parameters that affect the lateral oscillatory stability is also
provided. Through further investigation and analysis of
the effects of these major parameters, the necessity of making
separate calculations for each airplane might possibly be
eliminated. Test functions are given which, if satisfied,
indicate that the simplified expressions may be used.

The nature of the modes of motion as a function of O,,ﬁ
and O, the directional-stability derivative and effective-
dihedral derivative, respectively, is shown to depend upon
the location of the stability boundaries plotted as a function
of C'nﬁ and C’,ﬂ.

The results of the calculations based on the simplified
expressions are presented for comparison with the results
obtained by the complete expression for the neutral-
oscillatory-stability boundary.

SYMBOLS AND COEFFICIENTS

angle of bank, radians

angle of azimuth, radians

angle of sideslip, radians (¢/V)

sideslip velocity along the Y-axis, feet per second
airspeed, feet per second

mass density of air, slugs per cubic foot

1
dynamic pressure, pounds per square foot <§ pV2>

wing span, feet
wing area, square feet
weight of airplane, pounds
mass of airplane, slugs (W/g)
acceleration due to gravity, feet per second per second
relative-density factor (m/pSbh)
inclination of principal longitudinal axis of airplane
with respect to flight path, positive when principal
axis is above flight path at the nose, degrees
(see fig. 1)
6 angle between reference axis and horizontal axis,
positive when reference axis is above horizontal
axis, degrees (see fig. 1)
€ angle between reference axis and principal axis,
positive when reference axis is above principal
axis, degrees (see fig. 1)
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angle of flight path to horizontal axis, positive in a
climb, degrees (see fig. 1)

radius of gyration in roll about principal longitudinal
axis, feet

radius of gyration in yaw about principal vertical
axis, feet

nondimensional radius of gyration in roll about
principal longitudinal axis (kz /b)

nondimensional radius of gyration in yaw about
principal vertical axis (kz,/b)

nondimensional radius of gyration in roll about
longitudinal stability axis <\/KX02 COSQT}—I-KZogsiIE’])

nondimensional radius of gyration in yaw about
vertical stability axis (\/KZO2 cos’ 9+ Ky’ sin® n)
nondimensional product-of-inertia parameter

((Kz—Kxy) sin n cos n)
trim lift coefficient w Cgs v

rolling-moment coefficient Rolhn%rzgl_nmﬁ)

: . Yawing moment
yawing-moment cocfficient ——st

lateral-foree coefficient Pq—tﬂé%go—lie>

cffective-dihedral derivative, rate of change of rolling-
moment coefficient with angle of sideslip, per
radian (0C,/0B)

directional-stability derivative, rate of change of
yawing-moment coefficient with angle of sideslip,
per radian (0C,/08)

lateral-force derivative, rate of change of lateral-
force coefficient with angle of sideslip, per radian
(0Cy/0B)

damping-in-yaw derivative, rate of change of yawing-
moment coefficient with yawing-angular-velocity

factor, per radian <b(,,/b 2’?,

rate of change of yawing-moment cocfficient with
rolling-angular-velocity factor, per radian

(ac ol ?’b

damping-in- mll derivative, rate of change of rolling-

moment cocfficient with rolling-angular-velocity

b
factor, per radian (b(]l/b é)V

rate of change of rolling-moment cocfficient with
yawing-angular-velocity factor, per radian

(aO,/a Ul
rate of chancr(\ of lateral-force coefficient with rolling-
angular-velocity factor, per radian (6(7} /O Zplbf

rate of change of lateral-force coefficient with yawing-
angular-velocity factor, per radian <DC’) yto) ;?,

time, seconds
nondimensional time parameter based on span (Vi/b)

differential operator <[d >
a8y

Routh’s discriminant

N\

AN \ Reference axis
.

~N
~
~ \
. N :
Princjpal axis-- ~ \
N

~
~

\7\2\*
\{ \\

- ~
\" \\ N
/J\“ N

X~ Flight path
\

. /

Horizonlol oxis

FicURe 1.—8ystem of axes and angular relationships in flight. Arrows indicate positive

direction of angles. N=f—vy—¢€.

A complex root of stability equation

AN+ BN+ ON+ DN+ E=0 (A\=E+1iw)
N complex root of stability equation

AN BN+ OV DN+ E=0 (N =¥ +iw")
r period of oscillation, seconds

T time for amplitude of oscillation to change by factor
of 2 (positive value indicates a decrease to half-
amplitude, negative value indicates an increase to
double amplitude)

A, B, C,D,E coefficients of lateral-stability equation

EQUATIONS OF MOTION

The nondimensional linearized equations of motion, re-
ferred to the stability axes, used to calculate the spiral-
stability and oscillatory-stability boundaries for any flight
condition are:

Rolling

2us (KD o+ Ky DY) = Olﬁﬁ ‘i‘% CzpD »P +é Oer o

Yawing

2 (KD Y+ KuDy¢) =Cuobtg Cu Dotk Co D
Sideslipping
2l Do+ D) =Cr gt 5 O,

Dyop+Cy, ¢’+ O} Dy4-(Cr tan vy

When ¢ge*+ is substituted for ¢, e for ¢, Boe*t for B in
the equations written in determinant form, A must be a root
of the stability equation

ANH BN+ O +DA+E=0 M
where

1‘1 = 8/.Lb3 (KXZKZZ“"KXZZ)

B=— 2#02(2KX2KZQCY5+KX2071, + Ifzzolp - 2KXZZOYB'_

KXZOZ,.—KXZOnp>
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C= (KX2On,OYﬂ + 4#bKX20n8 +Kz201p Oyﬁ -+ % On,.Olp -

K0, Cry— 40K Ciy— o KsCyy—5 O O+
szonﬁoyp—Kzzoypc,ﬁ—szoyronﬁ+KXZOY10,,,)

D=—3 0,Cy,Cry—mCy,Cayt5 O Oy, Ciryt s, Cit
21450 KxzClog— 2000 K Cpy— 201 K Oy tan v+
20Kz 0y 400 v+ Oy OrayCly, — 5 Ca CiyCrr,—
1 0, Cu,Cr,+5 Co O,

.1 1
E=§ OL(O"rOlB—Oer”ﬂ) +§ OL tan ’y(C,pOnﬁ—Onp(],B)

7

Multiplying equation (1) by pu, and substituting )\z)‘-

n
results in the stability equation ’
ANAEBN3 L ON 4+ DN +E=0 (2)
where
=4
uy
B=2,
b
o=¢
Ho
D=D
E::“LI)E

The damping and period of the lateral oscillation in
seconds are given respectively by the cquations

0.69 b

T p=— Y %27‘
6.28 u,b
P o V

where £’ and «’ are the real and imaginary parts of the
complex root of stability equation (2).

ANALYSIS

The necessary and sufficient conditions for neutral oscilla-
tory stability, as shown in reference 3, are that the coeffi-
cients of the stability equation satisfy Routh’s discriminant
set equal to zero

R=BCD—AD*—B*E=0 3)

and that B and D have the same sign. The expression for
R=0 can be derived by assuming that the stability equation
has two roots A= +iw, where w is the angular frequency of
the neutrally stable oscillation. This assumption is based
on the fact that for the condition of neutral oscillatory
stability the real part of the complex root must be zero.

If A=1w is substituted in the stability equation, the following
two equations are obtained:

Awt—Cu?+E=0 4)
—Buw*+Dw=0 5)
Solving equation (5) for «* and then substituting the result

<w2=§> in equation (4) results in Routh’s discriminant

BCD—AD?*—B*E=0

It is seen from equation (5) that w=\/ % is the angular fre-

quency of the neutrally stable oscillation only when B and
D are of the same sign since w must have a real value if the
root A==44w is to represent an oscillation. If B and D are
of opposite sign and R=0 is satisfied, the two roots of the
stability ecquation given by A= 41w are real, one positive
and one negative. It is important to note that the A4, O,
and K coefficients may be of opposite sign to the B and D
cocfficients, and neutral oscillatory stability will still occur
as long as Routh’s discriminant is equal to zero and the D
and B coeflicients are of the same sign.

In general, the R=0 boundary in the (',
two branches. The two branches result from the fact that
R=0 is a quadratic cquation in (", and thus has two Cy
roots for every value of (g Usually, the two branches can
be approximated by simplified cxpressions for B=0. In
certain cases, however, which are discussed in the scction
entitled “Test Functions,” cither one or none of the branches
may be approximated.

Now, the condition R=0 is a necessary but insufficient
condition for necutral oscillatory stability. The simplified
expressions, therefore, which approximate R=0 do not
necessarily represent boundaries of neutral oscillatory
stability. Other conditions, elaborated on in the section
“Validity of D=0 and R,=0 as Necutral-Oscillatory-Stability
Boundaries,” must be satisfied before cither expression
represents a valid boundary.

There are, therefore, two kinds of tests that must be made:
First, tests to determine whether R=0 may be approximated
by simplified cxpressions; and, second, tests to determine
which of these expressions represents a boundary of neutral
oscillatory stability. The significance of the lateral-stability
boundarics is indicated by a discussion of the modes of motion

in the (,,C"y plane.

(' plane has

DERIVATION OF SIMPLIFIED EXPRESSIONS

Two of the most important stability derivatives affecting
lateral oscillatory stability are the directional-stability
derivative (’nﬁ and the effective-dihedral derivative C’,ﬂ.
The boundary for neutral oscillatory stability is usually
plotted as a function of these two derivatives with O,,ﬂ as
the ordinate and O,ﬁ as the abscissa. The method used to
obtain the neutral oscillatory stability boundary is first to
substitute the values of the mass and aerodynamic param-
eters of a specific airplane in the coefficients of the stability
equation while maintaining O"B and C,B as variables and
then to calculate the 0’8 roots of equation (3) for several
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values of O’,Lﬂ. For a given value of O,Lﬁ, the expression for

R=0 is a quadratic equation in C;ﬂ that is of the form
0/101,92‘*‘1’1013‘*‘01:0

For a very large number of cases, it has been found that the
last term of Routh’s discriminant B2E, which contributes
only to b, and ¢;, produces a negligible change in the expres-
sion

010162+b101ﬂ+61=0

If, therefore, the term B?E is neglected, equation (3) for
Routh’s discriminant reduces to

R=D(BC—AD)=0 (6a)

Thus BO—AD=0 and D=0 are the approximate factors of
the quadratic equation

(110132‘}‘ 61015"{"01:0

The expression BC— AD is henceforth called R;.

In order to simplify the expressions for R, and D, the
expected range of values of mass and aerodynamic param-
eters for high-speed aircraft were substituted in the coeffi-
cients of the stability equation to determine which terms
could be omitted without appreciably affecting the values of
R, and D. The following simplified coefficients were obtained:

A=8u,*(Kx’K;'— Kx7°)

B=— 2#02 (KYZOnr + 2KX2KZQOYB+ Oerzz)

C= Mo <4/~"0Kx2onﬁ_ 4.‘-‘bKXZOlﬁ+% C"rOlp +
Oy, Kyt 0,,pcz,)

D:ﬂb(CIL], _Q(YLKZ2) Czﬁ—#b (Ozp— 201,sz) C
L1

EZ—Z- OL(C7ITOZﬂ_Ol70"ﬂ)

The expressions for B, and D) thus become

R1: (A sz_AzAa) Czﬁ [_KXZ (2A30L+ OZBKXZ) _KX2 (Al -
C
OBy 2 | (41— K — G SRS

and
DZAzozﬂ— (Olp_2OLKXZ) Onﬂzo (6¢)
where
Al - KY2 On, + 2KX2KZ2 OYﬁ + Oz ,,I{z2
A2 - np 2CYLI{Z <6d)
Aa = KX2K22 - I{xz2

The simplified expressions B,=0 and D=0, as presented,
are applicable only to conditions of level flight or to condi-
tions of small angles of glide or climb. Simplified expressions
for conditions of large angles of glide or climb can be derived
by a procedure similar to the one presented.

TEST FUNCTIONS

The approximate discriminants B;=0 and D=0 are based
on the assumption that B?FE can be neglected when Routh’s
discriminant is set equal to zero. Thus, the simplified
expressions for the neutral-oscillatory-stability boundary,
R, and D, should not be used if including the terms B*E
causes an appreciable change in the roots of E=0. In
appendix A test functions are derived which indicate the
incremental change in the roots of B;=0 and D=0 due to
the terms B2E. If certain conditions placed upon these test
functions are satisfied, then R, and D can be used to calculate
the R=0 boundary.

If, at a given value of Cnﬂ, the root of B;=0 is denoted
by (’,ﬂ=r, the approximate deviation of this root from a

root of R=0 is given by

efe—r)
A= G d—7) e @

If Ar is small, then I,=0 is a close approximation to one
branch of R=0. A suitable criterion for this approximation is

i

|Ar|=0.01

INE

or

whichever is the larger.

Similarly if a root of D=0 is denoted by Cy=d, the
approximate deviation of this root from a root of R=0 is
given by

__al—=d
AR ®

If Ad is small, then D=0 is a close approximation to one
branch of R=0. A suitable criterion for this approximation is

jadl= |4

IdA|£0.01

or

whichever is the larger.
The expressions for ri, di, €1, 7, d, and e for use in equations

(7) and (8) arc
r1=8uy (A K xz—A345)
di=ppAs
e1=2p,4°CpC,

r= (015) R;=0
d= (O’ﬂ) D=0
€= (Clﬁ) BiE=0

where A,, A, and A4; are defined in equations (6d).

The value of Onﬂ to be used inthese test functions should be
sclected from the probable range of C,; of the airplane for
which the lateral-stability analysis is to be made. Thus, the
approximation of Ry=0and D=0to R=0is determined in that
region of the 0"5’0’5 plane pertinent to a particular analysis.
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VALIDITY OF D=0 AND R;=0 AS NEUTRAL-OSCILLATORY-STABILITY
BOUNDARIES

As mentioned previously, for R=0 to be a boundary for
neutral oscillatory stability, the coefficients B and D must
be of the same sign. The three predominant terms of B con-
tain the factors —C,,, —Cy, and —C,, respectively. For
positive damping in roll, C:, is negative; and for positive
weathercock stability (O,,ﬁ positive), OYB and C,, are negative.
Thus, B is positive in the usual case where there is weather-
cock stability and damping in roll. Therefore, D must gen-
erally be positive in order that R=0 be a neutral-stability
boundary. If the exact boundary R=0 has been calculated,
it is merely necessary to plot D=0 and E=0 and note whether
R=0 is located on the side of D=0 where D is positive. A
primary purpose of the present report, however, is to obviate
calculation of the exact boundary by the use of simplified
boundaries together with test functions. A method to
determine the sign of D from the results of the simplified
expressions is therefore presented in the following paragraph.

For a given value of (g (selected from the probable range
of C’nﬂ of the airplane for which the lateral-stability analysis
is to be made) let d be a value of (718 for which D=0 and d’
be a slightly different value for which

R=R,D—B’E=0
The substitution of Olﬁ:d’ gives

D@ =-——B}§f (%)

The sign of D at the R=0 boundary (Chy=d’) is therefore

determined by the signs of £ and R, at d’. But since d
differs little from d’, the signs of E(d) and R,(d) will be the
same as the signs of I£(d’) and R,(d’), respectively. Hence
the sign of D at R=0 is the same as the sign of E/R; at D=0
(fig. 2); that 1s,

K (d)

PO =ga

If the signs of £ and R, arc the same, D is positive and repre-
sents a neutral-oscillatory-stability boundary; if E and R,
are of opposite sign, D is negative and then represents a
boundary for which the roots of the stability equation arc
equal and opposite in sign.

T [T
e R=0 E=0 |rR-0|D=-0
2 /
& N / 74

-08 \ 7 R, ond E,
. / bl
04 : o

| laa=diag | [\ /

0 AId[ l ] r

-16 -12 -08 —~04 0 .04 .08 .12 .16 20

_clﬁ

FIGURE 2.—Validity of D=0 as a neutral-oscillatory-stability boundary.

The preceding analysis is applicable for the large majority
of cases where £ (d’) and Ri(d’) are of the same sign as E(d)
and R,(d), respectively. For these cases, the D curve is
widely separated from the E and R, curves. If the D curve
is close to either the £ or R, curve, the signs of E and R,
should be determined at Ciy=d’. However, a very good
approximation to the value of d’ can be obtained by adding
to d the value of Ad calculated in the previous section entitled
“Test Functions.” Hence, the sign of D is determined from
the signs of £ and R, at C,=d+Ad.

If the value of Cj, at which B,=0 is substituted in D and
the resultant sign is positive, B;=0 is a neutral-oscillatory-
stability boundary.

It is interesting to note that for some aircraft, the D=0
curve, which approximates one branch of the R=0 curve, is
a neutral-oscillatory-stability boundary over one section of
the curve and a boundary for equal and opposite real roots
over the remaining section. This division of the D=0 curve
into two distinct parts is caused by a change in sign of the D
coeflicient at some point on the curve. If, as has been found
in a large number of cases, R, is positive for all values of Cy,
and C’,ﬂ on the D=0 curve, the sign of the D coefficient de-
pends only on the sign of E at these points. As shown in
figure 3, therefore, the point of intersection of the curves D=0
and E=0 is the point of separation of the =0 curve into
two characteristically different sections. For points on the
hatched side of £=0, the Z coefficient is negative and, there-
fore, the dashed part of D=0 is a boundary of equal and
opposite real roots. Conversely, on the unhatched side of
E=0, the E coefficient is positive and the solid part of D=0
approximates a boundary of neutral oscillatory stability.

For small positive or negative values of (ng and negative
damping in roll, il is possible for B to be negative. A similar
analysis is applicable to this case where now D must be nega-
tive to satisfy the necessary condition that R=0 is a boundary
of neutral oscillatory stability.

In general, when the simplified expressions are used to
obtain a neutral-oscillatory-stability boundary, the procedure
to be used is as follows:

(1) For a given value of (g selected from the probable
range of C”ﬁ of the airplane for which the lateral-stability
analysis is to be made, calculate » and d, the O,ﬁ roots of
R,=0 and D=0, respectively.

20 Stable
16 Unstoble
R=0 L D=0
12
<
<& N ’&\ <
08 N <
5 "~
P
4 [~ E=
04 \\ —3 et (£ 0
0 4]
-/16 - /2 -.08 -.04 0 .04 .08 .12 .16 .20

P Clﬁ

Ficurg 3.—Effeet of the position of the E=0 boundary on the validity of D=0 as an approx
mate neutral-oscillatory-stability boundary.
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(2) Determine the value of Ar and Ad by substituting the
results into the test functions.

(3) If the criterions for Ar and Ad as set forth in appendix
A are satisfied, consider R, =0 and D==0 close approximations
to the =0 boundary.

(4) In order to determine the validity of ’y=0 as a
boundary of neutral oscillatory stability, substitute the

given value of U,,; and OZﬂ:r into the D coefficient. (If the

resulting sign is positive, B =0 approximates a branch of the
neutral-oscillatory-stability boundary.)

(5) In order to determine the validity of D=0 as a
boundary of neutral oscillatory stability, substitute the given

value of (7, s

is positive, D=0 approximates a branch of the neutral-
oscillatory-stability boundary; if the resulting sign is nega-
tive, D=0 approximates a boundary of equal and opposite
real roots.)

and C,ﬁzd mto 5— (If the resulting sign
1

NATURE OF MODES OF MOTION IN THE Cnﬁ,C,ﬁ PLANE

In this scction, the changes in the roots of the lateral-
stability cquation, which occur upon crossing the various
stability boundarics, are discussed according to the principles
of the theory of equations as given in references 3 and 4.
The solution of the lateral-stability equation gives four roots
which may be four real roots, two pairs of conjugate complex
roots, or two real roots and one conjugate complex pair. A

pair of complex roots indicates an oscillatory mode and a -

real root indicates an aperiodic mode. If the airplane is
disturbed from its trimmed condition by an arbitrary dis-
turbance, the subsequent motion is compounded of these
modes in different proportions. The method of calculating
the different proportions of the modes is presented, for ex-
ample, in references 5 and 6. Such calculations of the motion

for numerous points throughout the (’,16,
very laborious. It is more practical, therefore, to investigate

merely the types of modes that may be expected throughout

the € 7,1,5,

The calculation of the motion could then be limited to several
points of interest.

Consider a case where the neutral-oscillatory-stability
boundary R;=0 and the spiral-stability boundary £=0
are located in the first quadrant of figure 4 (a). The area
between the two boundaries is a region of complete stability.
The roots of the stability cquation for combinations of
Cog and Oy, in this region, such as point A in figure 4 (a),
are two negative real roots and one conjugate complex pair
with the real part negative. One of the real roots which is
numerically small corresponds to the spirally stable motion
of the airplane. The other real root corresponds to the
heavy damping of the pure rolling motion. The complex
roots with the real part negative show that the so-called
Dutch roll oscillation is stable. Passing through the E=0
boundary from point A to point B causes the spiral mode
to become unstable, and crossing through the B, =0 boundary

(’,ﬁ plane would be

"y, planc as indicated by the stability boundaries.

from point A to point C causes the oscillatory mode to
become unstable. The second branch of the R=0 boundary
plotted in the second quadrant as D=0 is not a neutral-
oscillatory-stability boundary but rather a boundary for
equal and opposite roots as determined by the analysis
presented in the section entitled “Validity of D=0 and
R,=0 as Neutral-Oscillatory-Stability Boundaries.” The
roots of the stability equation for combinations of C,; and
Cy, on this boundary are two equal and opposite real roots
and a pair of complex roots with the real part negative.
The positive real root is the spirally unstable mode, and the
negative real root is the damping-in-roll mode. The
oscillation continues to remain stable even though the D
coefficient is negative.

For the case where one oscillatory-stability boundary
D=0 appears in the first quadrant and another oscillatory
stability boundary R, =0 is in the second quadrant (fig. 4 (b)),
the period of the neutrally stable oscillation is much
greater on D=0 than on R,=0. This fact can be shown to
be true by investigating the angular frequency of the
neutrally stable oscillation for points located on the R1=0
and D=0 boundaries. As shown previously, the angular
frequency o is equal to +/D/B; and, therefore, since the
boundary I7=0 approximates onc branch of R=0, the
angular frequency for points on that branch is very small.
For combinations of C’,Lﬂ and Olﬂ on R;=0, the angular
frequency is much greater. In general, D=0 is a neutral-
oscillatory-stability boundary for a long-period oscillation.
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FIGURE 4.—Nature of roots of stability equation in C,lﬂ, Clﬂ plane.
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which two pairs of complex roots exist.
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The roots at point A of figure 4 (b) have the same character
as the roots at point A of figure 4 (a), that is, two negative
real roots and one pair of conjugate complex roots. At
point B the roots of the lateral-stability equation are two
pairs of conjugate complex roots. It is interesting to note
that the boundary for two equal roots occurs between point A
and point B and can be considered the boundary beyond
Reference 4 shows
that for a quartic equation

AN BN+ ON4-DAN+E=0

the boundary for equal roots is obtained by setting the
discriminant

4P 27
equal to zero, where
P=BD—4AE— (;
and
Q= —BE+ Iig-D + 8A3-OE —AD— 3267”

Between this boundary and D=0, the period of the stable
oscillation which corresponds to the newly formed pair of
complex roots is longer than the period of the oscillation
which corresponds to the other pair of complex roots. As
(‘,B is increased to point C on the unstable side of D=0,

the newly formed long-period oscillation is the one that
becomes unstable, whercas the short-period oscillation
remains stable. At point D the roots consist of a spirally
unstable mode, a stable mode due to the derivative (’,p, and

a stable oscillation which becomes unstable in passing through
R,=0 to point E.

Figure 4 (c¢) represents the case where hoth Ry=0 and
D=0 appear in the first quadrant but only R, is a neutral-
oscillatory-stability boundary. The curve D=0 is the
boundary for two ecqual and opposite real roots. Point A
once again has two real negative roots and a pair of complex
roots with the real part negative. At point B, on the
unstable side of B, =0, the real part of the complex roots is
positive and indicates an unstable oscillation, wherecas the
two real roots are still negative. The boundary for (=0 is
between R;=0 and D=0. Some investigators of lateral
stability have thought that a radical change occurs in the
roots upon crossing through this boundary. The calcula-
tions indicate, however, that the roots do not vary appre-
ciably upon passing through C=0. At D=0, however,
there must exist two equal and opposite real roots; this
condition is possible only if the complex roots divide into
real roots since the other two real roots are negative in sign.
The calculation of roots at point C indicate that the complex
roots had divided into two real positive roots, one of which
was exactly equal in magnitude to one of the negative roots.
Again, the boundary for two equal roots, located between
C=0 and point C, would determine the combinations of

0,ng and C’;B where the complex roots divide into two real
roots.

There have been several cases for which a neutral-oscilla-
tory-stability boundary did not exist in the Onﬁ,C,ﬁ plane.
An analysis of these cases indicated that the boundary for
equal rocts was in the oscillatorily stable region and had
divided the stable oscillation into~ two " subsiding modes.
The neutral-oscillatory-stability boundary, therefore, would
not, have any significance.

RESULTS AND DISCUSSION

The simplified expressions were used to calculate ;=0 and
D=0, and the results are compared with the results of the
calculation of R=0 based on the complete expression. Not
only do R;=0 and D=0 show good agreement with E=0
(figs. 5 to 13) but the comparative simplicity of the B, and
D expressions allows identification of the major parameters
that affect the stability boundaries.

EFFECT OF C»,—2CLK 7! ON THE BRANCH OF R=0
APPROXIMATED BY D=0

Reference 2 shows that a stabilizing shift in the R=0
boundary is obtained when €, is increased in a positive
direction up to a certain value, but further increases in the
positive direction cause a destabilizing shift in £=0. The
effeet of varying C,, on the B=0 curve is presented in
figure 5 for a model tested in the Langley free-flight tunnel.
The figure illustrates very good agreement between R=0
and the simplified expressions R;=0 and D=0. The
expression for D=0 is

(Cr,—2CLKxz) Cug

Cp—
o= Onp - ?-'CVL‘Z{Z2

which indicates that for positive Cy; when the numerator is
negative in sign the D=0 boundary is in the sccond quad-
rant for negative values of 0, —2C.K;*=A; and in the first
quadrant for positive values of 4.. For the cases of negative
A, presented in figure 5, the D=0 boundary would appear
in the second quadrant. It can be shown, however, by the
method described in the section “Validity of D=0 and R;=0
as Neutral-Oscillatory-Stability Boundaries” that D=0 in
the second quadrant is not a neutral-oscillatory-stability
boundary and hence is not plotted in figure 5. However, as
C,, is increased in a positive direction, where now A, is posi-
tive, an increase in the positive value of A, causes the D=0
boundary to shift upward in the first quadrant in a destab-
ilizing direction.

From the results shown in figure 5, it is seen that for the
cases of O, equal to 0.30 and 0.40 only the solid-line part of
the R=0 curve in the first quadrant (the branch which may
be approximated by D=0) is a neutral-oscillatory-stability
boundary. The short-dash-line part of R=0 is a boundary
of equal and opposite real roots. 'The reason for this division
of the R=0 curve into two parts is discussed in the section
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FiGURE 5.—Etiect of C,.p and .17 on the neutral-oscillatory-stability boundary.

entitled ‘“Validity of D=0 and R,=0 as Neutral-Oscillatory-
Stability Boundaries” and is illustrated in figure 3.

EFFECT OF C.,—2CLKz? ON THE BRANCH OF R=0
APPROXIMATED BY R=0

The important effect of C,, on R;=0 occurs only in the
coefficient of the Clﬂ term, A Kxz— AsA4;, in which O,,p affects
only the factor A, The sign of A4; is always positive and the
sign of A, is negative for positive C,;. By definition, Ky is
positive if the principal axis is above the flight path at the
nose of the airplane as is the case for the curves presented in
figure 5. ~.In general, for positive C,,, the expression of ;=0
which does not include any €y, terms is positive and, except
for one term, is independent of C,,. If, therefore, the
cocflicient of (', is positive, Bi=0 is in the first quadrant;
whereas if the coefficient of C,; is negative, Bi=0 is In the
second quadrant. As C, increases in a positive direction
and A, becomes more positive, the coefficient of €y, becomes
more negative and R,=0 in the second quadrant shifts
upward in a destabilizing direction. If A, is negative but
the absolute value of A, increases, as in going from 0,1020.15
to C,,=—0.10 in figure 5, the coefficient of €y becomes
more positive and R, in the first quadrant also shifts upward
in a destabilizing direction. Thus the results indicate that
increasing the absolute value of A, has a destabilizing effect
on the neutral-oscillatory-stability boundary.

According to a previous discussion herein, variations in
0,,17 that maintain A, constant cause no shift in the D=0

boundary. When, therefore, B=0 is approximated by
D=0, such changes in C’,,p and K, should have a negligible

effect on the R=0 boundary. In order to test this point,

calculations were made for a free-flight airplane model for
C,, varying from 0.30 to 0.63 while simultaneously varying
K,? in order to maintain the same positive value of A,.
The results showed the expected insensitivity of the B=0
boundary to these changes.

It should be remembered that D=0 in the first quadrant
is the neutral-oscillatory-stability boundary for the long-
period oscillation; and if instability were to occur, the pilot
might not find this type of instability difficult to control.

EFFECT OF C., Crg AND Kx ON THE BRANCH OF R=0
APPROXIMATED BY D=0

The D expression indicates that the D=0 boundary is
independent of the derivatives C,, and Cys and the mass
parameter Kx. Figures 6 and 7 show a comparison of the
results obtained by the complete calculations with D=0
for the cases in which ), and Oyﬁ, respectively, were arbi-
trarily doubled in value.  As noted in the figures, ¢, and
Cy, have a negligible effect on the boundary. The effect of
K+ on the branch of R=0 which may be approximated by
D=0 is shown in figurc 8. Complete calculations were
made to obtain the Z=0 curves for the previously discussed
free-flight airplane model. The value of A, used in these
calculations was 0.17. For purposes of comparison, Kx was
arbitrarily increased by a factor of 2.5. Again the results
show practically no effect of Kx on this branch of =0, as
is indicated by the simplified expression D=0. For the
case discussed in figures 6 to 8, the branch of R=0 approxi-
mated by RB;=0 is in the second quadrant and has little
practical importance. Hence, the effect of these parameters
on R; was not determined for this particular case.
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FiGuRrE 8.—Effect of Kx on the neutral-oscillatory-stability boundary.

EFFECT OF PRODUCT OF INERTIA ON THE BRANCHES OF R=0
APPROXIMATED BY R1=0 AND E=0

The product of inertia has been shown to have a very
pronounced effect on the lateral stability of present-day
airplanes designed for high-speed high-altitude flight (refer-
ences 1 and 7). The importance of the product of inertia is
illustrated in figure 9 (a), which presents the R=0 boundaries
of the hypothetical airplane discussed in reference 1 for two
angles of inclination of the principal axis relative to the
flight path, n=0° and »=2°. Calculations were also made
for these cases using RB;=0; and the results presented in
figure 9 (a) show the same marked stabilizing shift in the
boundary, caused by the 2° inclination of the principal axis
above the flight path, as obtained by the complete calcula-
tions. The value of A4, for the B,=0 calculations was —0.18.
The value of C’np was then increased so that 4, was equal
to 0.13 (fig. 9 (b)). In this case, D=0 appears in the first
quadrant and R,=0 is in the second quadrant. Although
both D=0 and R,=0 are valid boundaries, the results are
discussed only for the effect of product of inertia on D=0
since only the Onﬁ,C’,ﬂ combinations in the first quadrant
are usually of practical significance. Calculations for n=0°
and n=2° were made using D=0 and R=0. Although the
product-of-inertia factor Kxz does appear in the D) expression
(in the term —2C, Kyz), an examination of I indicates that
this term could have only a negligible effect on D=0 when
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C,, is much greater than 20 Kxz, as is usually the case.
Figure 9 (b) shows that the results predicted from D=0
agree very well with the results obtained from the complete
calculatiouns.
EFFECT OF RADII OF GYRATION. ON THE BRANCH OF R=0
APPROXIMATED BY Ri=0

Figures 10 to 12 are presented for the purpose of showing
the close agreement between results obtained by using ;=0
and results obtained from reference 1. The three figures
illustrate the effect of the radii of gyration in roll and yaw
kx, and kz,, respectively, on the neutral-oscillatory-stability
boundary. Figure 12 emphasizes the fact that the simplified
expression is sufficiently accurate to predict the effect of
kx, on the oscillatory-stability boundary throughout the

entire range of variation of ky,.

EFFECT OF WING LOADING AND ALTITUDE ON THE BRANCHES OF R=(
APPROXIMATED BY R;=0 AND D=0

The effects of wing loading and altitude on the neutral-

oscillatory-stability boundaries were determined simul-

taneously by considering variations in the relative density
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FiGURE 12.—Eftiect of kxq on the neutral-oscillatory-stability boundary.

factor w, because p, varies directly with both wing loading

and altitude. An examination of the expressions R;=0

and D=0 indicated that increasing u, causes a slight destab-
ilizing shift in B, =0 but does not affect D=0 since u, does
not appear in the expression for D==0. The trend shown by

these results agrees with the results found in reference 1

concerning the effect of 1, on the neutral-oscillatory-stability

boundary.

COMPARISON BETWEEN NEUTRAL-OSCILLATORY-STABILITY BOUNDARIES
OBTAINED BY EXACT AND SIMPLIFIED EXPRESSIONS FOR A HIGH-SPEED
EXPERIMENTAL AIRPLANE

Some of the neutral-oscillatory-stakility boundaries ob-
tained from recent calculations for several experimental
high-speed airplanes have appeared much different from the
conventional stability boundaries. Because of the com-
plexity of the complete expression for R=0, it is difficult to
determine the reasons for such unusual looking curves and
the significance of the boundaries. From the simplified
expressions, however, a complete analysis of the boundaries
can be casily obtained. The £=0 boundarics of an experi-
mental airplane are shown in figure 13 (a). In addition to
the R=0 boundaries, the D=0 boundarics are also plotted
in the figure. As mentioned at the outset of this report,

R=0 is a necutral-oscillatory-stability boundary only if

D is positive. The R=0 boundarics on the hatched side of

D=0 arc not thercfore ncutral-oscillatory-stability bound-

aries. The boundaries for the same experimental airplane

calculated from the simplified expressions are plotted in
figure 13 (b). The R;=0 and D=0 boundaries which are
not neutral-oscillatory-stability boundaries, as determined
by the analyvsis presented in the section entitled “Validity of

D=0 and R,=0 as Neutral-Oscillatory-Stability Bound-

aries,” are shown as dash-line curves in the figure. In

D=0, the coefficient of Cy, becomes zero at (’,,5=0.056

and, therefore, the D=0 boundary approaches positive
infinity in the second quadrant at (’,,ﬁ:0.056. As O,,ﬂ
increases above 0.056, =0 returns from negative infinity
and appears in the first quadrant. Similarly, B,=0 ap-

proaches negative infinity when ("5 is approximately equal
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to 0.25 since the coefficient of ('IB in R=0, A/ Ky;— A4,
is zero at this value of C,,ﬂ. Above (',,5 of 0.25, R=0
returns from positive infinity and appears in the second
quadrant. It is necessary to note that in figure 13 (a) the
neutral-oscillatory-stability boundary is one continuous
curve; whereas in figure 13 (b) this boundary is composed of
two sections, one section of R;=0 and the other section of
D=0. The latter fact provides the important information
that the period of the oscillation which becomes unstable
upon passing through the D=0 boundary is comparatively
longer than the period of the oscillation which becomes
unstable upon passing through the R,=0 boundary.

11

CONCLUSIONS

The following conclusions were reached from a theoretical
investigation of a simplified method for obtaining and
analyzing the neutral-lateral-oscillatory-stability boundary:

1. A necessary condition for the lateral-neutral-oscillatory-
stability boundary is that R=D(BC— AD)— B2E=0, where
A, B, C, D, and E are the coefficients of the lateral-stability
equation. The expression for R=0 is approximated by the
expressions D=0 and R,=BC—AD=0. Criterions are de-
rived which, if satisfied, indicate that the approximate
expressions satisfy the necessary and sufficient conditions
for a neutral-oscillatory-stability boundary.

2. If D=0 and R,=0 approximate B=0, the curve D=0
represents the neutral-oscillatory-stability boundary for the
oscillation which has a period comparatively longer than the
period of the oscillation for which E,=0 is the boundary.

3. In gencral, the results of the computations obtained
from R;=0 and D=0 show very good agreement with the
results calculated by the exact expression for E=0. Specifi-
cally, the results of the investigation indicated:

(a) An increase in the absolute value of the parameter As,,
which is equal to (), —2CLK,* (where ( Tt is the yawing-
moment cocfficient due to rolling-angular-velocity factor,

. 1s the trim lift coefficient, and K7 is the radius of gyration
in yaw), causes a destabilizing shift in the branches of
R=0 approximated by D=0 and R,=0.

(b) The branch of R=0 approximated by D=0 mainly
depends upon the parameter A4, and the damping-in-roll
derivative ( P The product-of-inertia term Ky also appears
in 1), but it has a negligible cffect on the branch of R=0
approximated by D=0.

(¢) An increase in the relative-density factor u, causes a
destabilizing shift on the branch of R=0 approximated by
=0 but docs not affect the branch of R=0 approximated

by D=0.

4. The neutral-oscillatory-stability boundaries computed
from the simplified expressions show cxcellent agreement
with the corresponding boundaries presented in NACA
TN 1282.

LANGLEY AERONAUTICAL LABORATORY,

NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lancuey Fieup, Va., August 4, 1948.




APPENDIX A

DERIVATION OF TEST FUNCTIONS Ar AND Ad

For a given value of C,, selected from the probable range
of C,, of the airplane for which the lateral-stability analysis
is to be made, let

OR —

R1=r101B+r2 DO;=TI (01,3>R,=0=T12=7’
oD —d,

D=d,0y+d, D‘O,B:dl (Olﬂ)n=0:fd;2:d
OB’E —¢

B’E=e,C;+e oC,, — (Cig) rio=0= ﬁ:e

As shown in figure 14 the exact roots of R=R,D—B*E=0
occur at the intersection of the straight line B*E with the
parabola RB,D. In the vicinity of the point Uy;=r, at which
R,=0, the curve R,D is approximated well by a straight
line tangent to the curve at Cj,=r, that is,

OR,D
0C /g, -

RIDz< (Ozﬂ_r) = (—7‘2(11—}—7“1(12) (Ozﬁ—)’)

0
If there is a root of R=R,D—B?F=0 near E,=0 (that is,
if B2E intersects R,DD near the point r in fig. 14), then

R= (—rgd1+T1(l2) (Olﬂ'—r) _3101ﬂ—€2:0

Thus, the approximate deviation of a root of =0 from E,=0
is given by
= Cpy— . a1
Ar= (OIB r> (8 (rldz—rzdl—el)
e (e—r)
R 7 I Al
rdy(d—r)+e (AD)
If this deviation, Ar, is small, then B;=01s a closc approxi-
mation to one branch of R=0. A suitable criterion for this
approximation is

Ar| =

or

‘Ar =<0.01

whichever is the larger.
In the case of D=0, a similar analysis results in the test

function

e(e—d)

Ad:r1d1 (r—d)+e

(A2)

If Ad is small, D=0 may then be considered a close approxi-
mation to the other branch of R=0. A suitable criterion for
this approximation is

<
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or

Ad|£0.01

whichever is the larger.

The expressions for r, d;, and ¢, for use in equations (A1)
and (A2) are

71=8uyp (AIKXZ_AZAS)
dl :.UbAz

e= ZubAIZOLOnT
where

Al = I{XQ Cn, + 2Kx2K22 CYB + ClpKzz
Agz Oﬂp - ZCLKZZ
Aa = KX2K22 ’_KXZZ
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